

CI/CD
CI/CD is the combined practices of continuous integration
(CI) and continuous delivery (CD). It is a framework where
software is continuously built, tested, deployed and validated
throughout its lifecycle. Continuous Integration is the process
of frequently building and testing new code changes, while
Continuous Delivery is the process of deploying new versions
of an application frequently. CI/CD is a best practice for dev-
ops teams and agile methodology.

manual integra,on and
deployment processes causing
delays and inconsistent code
quality.

Implementing CI/CD practices,
automating integration, testing
and deployment pipelines.

CI/CD streamlined development, improved quality, reduced costs,
reduced ,me-to-market, minimized risk, and enhanced
collabora,on.

Automated Build and Testing:
CI/CD prac*ces automate the process of
building and tes*ng code changes as they
are integrated into the development
pipeline. This means that every *me a
developer makes a change to the codebase,
the CI/CD system automa*cally compiles the
code and runs a suite of tests to iden*fy any
issues or errors.

Version Control Integration:
CI/CD is closely integrated with version
control systems like Git, which provide a
structured way to manage and track code
changes. Developers can collaborate on
code, track changes, and manage different
versions of the soBware.

Continuous Integration:
Con*nuous integra*on is a core CI/CD
prac*ce where code changes are
con*nually integrated into a shared code
repository.

Continuous Deployment:
Con*nuous deployment is an extension
of con*nuous integra*on that
automates the deployment of code
changes to produc*on or staging
environments.

Automated Testing Suites:
CI/CD encourages the implementa*on of
automated test suites that cover various
tes*ng types, including unit, integra*on,
and regression tes*ng. These tests are
designed to validate the func*onality and
reliability of the soBware.

Manual Build and Tes*ng: We relied on manual processes for building
and tes*ng our code, leading to *me-consuming and error-prone
workflows. This oBen resulted in delays and inconsistent code quality.

Version Control Complexity: Managing code changes and collabora*ng
effec*vely across our development teams was challenging, as we lacked a
centralized version control system.

Integra*on BoMlenecks: The absence of con*nuous integra*on prac*ces
meant that code integra*on was infrequent and prone to conflicts,
delaying the development process.

1.NuWare seamlessly implemented Con*nuous Integra*on and
Con*nuous Deployment (CI/CD) prac*ces using Jenkins, streamlining our
soBware development pipeline and enabling automated builds and
deployments.

2.we leveraged Jenkins' dynamic build capabili*es to op*mize resource
u*liza*on and reduce infrastructure costs.

3.Integrated *ghtly with version control systems, such as Git. This
integra*on enhanced code management and enabled efficient
collabora*on among development teams.
4.CI/CD improved collabora*on between development and opera*ons
teams, breaking down silos, and promo*ng transparency. This
collabora*on streamlined processes and reduced fric*on.

The adop*on of CI/CD prac*ces brought about profound changes in our
soBware development process. It accelerated development cycles,
ensuring rapid feature releases and enhanced soBware quality. Efficient
resource usage led to cost savings and scalable infrastructure.
Collabora*on between teams improved, reducing fric*on. Importantly,
CI/CD reduced deployment risks through automa*on, enhancing
soBware reliability and security.

